首页 > 工作 > SSH命令的几种典型用法

SSH命令的几种典型用法

ssh命令是一把军刀,能干很多事,举几个比较典型的例子。
1、做ssh穿墙的firewall,192.168.1.10是firewall的当前ip,xx.xx.xx.xx是远端用来当跳板的ip

ssh -fNg -D192.168.1.10:22022 xx.xx.xx.xx

2、NAT:把当前server上的22022端口映射到xx.xx.xx.xx的22上。

ssh -fNg -L 22022:127.0.0.1:22 xx.xx.xx.xx

3、Socket5代理:用当前Server上的8080端口当代理,通过xx.xx.xx.xx上网。

ssh xx.xx.xx.xx -D192.168.1.10:8080 -g -f sleep 30d

附上ssh命令的手册

SSH(1)                    BSD General Commands Manual                   SSH(1)

NAME
     ssh - OpenSSH SSH client (remote login program)

SYNOPSIS
     ssh [-1246AaCfgKkMNnqsTtVvXxYy] [-b bind_address] [-c cipher_spec] [-D  [bind_address:]port] [-e escape_char] [-F configfile]
         [-i identity_file] [-L  [bind_address:]port:host:hostport] [-l login_name] [-m mac_spec] [-O ctl_cmd] [-o option]
         [-p port] [-R  [bind_address:]port:host:hostport] [-S ctl_path] [-W host:port] [-w local_tun[:remote_tun]]
         [user@]hostname [command]

DESCRIPTION
     ssh (SSH client) is a program for logging into a remote machine and for executing commands on a remote machine.  It is
     intended to replace rlogin and rsh, and provide secure encrypted communications between two untrusted hosts over an insecure
     network.  X11 connections and arbitrary TCP ports can also be forwarded over the secure channel.

     ssh connects and logs into the specified hostname (with optional user name).  The user must prove his/her identity to the
     remote machine using one of several methods depending on the protocol version used (see below).

     If command is specified, it is executed on the remote host instead of a login shell.

     The options are as follows:

     -1      Forces ssh to try protocol version 1 only.

     -2      Forces ssh to try protocol version 2 only.

     -4      Forces ssh to use IPv4 addresses only.

     -6      Forces ssh to use IPv6 addresses only.

     -A      Enables forwarding of the authentication agent connection.  This can also be specified on a per-host basis in a con-
             figuration file.

             Agent forwarding should be enabled with caution.  Users with the ability to bypass file permissions on the remote
             host (for the agent's Unix-domain socket) can access the local agent through the forwarded connection.  An attacker
             cannot obtain key material from the agent, however they can perform operations on the keys that enable them to
             authenticate using the identities loaded into the agent.

     -a      Disables forwarding of the authentication agent connection.

     -b bind_address
             Use bind_address on the local machine as the source address of the connection.  Only useful on systems with more than
             one address.

     -C      Requests compression of all data (including stdin, stdout, stderr, and data for forwarded X11 and TCP connections).
             The compression algorithm is the same used by gzip(1), and the "level" can be controlled by the CompressionLevel
             option for protocol version 1.  Compression is desirable on modem lines and other slow connections, but will only
             slow down things on fast networks.  The default value can be set on a host-by-host basis in the configuration files;
             see the Compression option.

     -c cipher_spec
             Selects the cipher specification for encrypting the session.

             Protocol version 1 allows specification of a single cipher.  The supported values are "3des", "blowfish", and "des".
             3des (triple-des) is an encrypt-decrypt-encrypt triple with three different keys.  It is believed to be secure.
             blowfish is a fast block cipher; it appears very secure and is much faster than 3des.  des is only supported in the
             ssh client for interoperability with legacy protocol 1 implementations that do not support the 3des cipher.  Its use
             is strongly discouraged due to cryptographic weaknesses.  The default is "3des".

             For protocol version 2, cipher_spec is a comma-separated list of ciphers listed in order of preference.  See the
             Ciphers keyword for more information.

     -D [bind_address:]port
             Specifies a local "dynamic" application-level port forwarding.  This works by allocating a socket to listen to port
             on the local side, optionally bound to the specified bind_address.  Whenever a connection is made to this port, the
             connection is forwarded over the secure channel, and the application protocol is then used to determine where to con-
             nect to from the remote machine.  Currently the SOCKS4 and SOCKS5 protocols are supported, and ssh will act as a
             SOCKS server.  Only root can forward privileged ports.  Dynamic port forwardings can also be specified in the config-
             uration file.

             IPv6 addresses can be specified with an alternative syntax: [bind_address/]port or by enclosing the address in square
             brackets.  Only the superuser can forward privileged ports.  By default, the local port is bound in accordance with
             the GatewayPorts setting.  However, an explicit bind_address may be used to bind the connection to a specific
             address.  The bind_address of "localhost" indicates that the listening port be bound for local use only, while an
             empty address or '*' indicates that the port should be available from all interfaces.

     -e escape_char
             Sets the escape character for sessions with a pty (default: '~').  The escape character is only recognized at the
             beginning of a line.  The escape character followed by a dot ('.') closes the connection; followed by control-Z sus-
             pends the connection; and followed by itself sends the escape character once.  Setting the character to "none" dis-
             ables any escapes and makes the session fully transparent.

     -F configfile
             Specifies an alternative per-user configuration file.  If a configuration file is given on the command line, the sys-
             tem-wide configuration file (/etc/ssh/ssh_config) will be ignored.  The default for the per-user configuration file
             is ~/.ssh/config.

     -f      Requests ssh to go to background just before command execution.  This is useful if ssh is going to ask for passwords
             or passphrases, but the user wants it in the background.  This implies -n.  The recommended way to start X11 programs
             at a remote site is with something like ssh -f host xterm.

             If the ExitOnForwardFailure configuration option is set to "yes", then a client started with -f will wait for all
             remote port forwards to be successfully established before placing itself in the background.

     -g      Allows remote hosts to connect to local forwarded ports.

     -I smartcard_device
             Specify the device ssh should use to communicate with a smartcard used for storing the user's private RSA key.  This
             option is only available if support for smartcard devices is compiled in (default is no support).

     -i identity_file
             Selects a file from which the identity (private key) for RSA or DSA authentication is read.  The default is
             ~/.ssh/identity for protocol version 1, and ~/.ssh/id_rsa and ~/.ssh/id_dsa for protocol version 2.  Identity files
             may also be specified on a per-host basis in the configuration file.  It is possible to have multiple -i options (and
             multiple identities specified in configuration files).

     -K      Enables GSSAPI-based authentication and forwarding (delegation) of GSSAPI credentials to the server.

     -k      Disables forwarding (delegation) of GSSAPI credentials to the server.

     -L [bind_address:]port:host:hostport
             Specifies that the given port on the local (client) host is to be forwarded to the given host and port on the remote
             side.  This works by allocating a socket to listen to port on the local side, optionally bound to the specified
             bind_address.  Whenever a connection is made to this port, the connection is forwarded over the secure channel, and a
             connection is made to host port hostport from the remote machine.  Port forwardings can also be specified in the con-
             figuration file.  IPv6 addresses can be specified with an alternative syntax: [bind_address/]port/host/hostport or by
             enclosing the address in square brackets.  Only the superuser can forward privileged ports.  By default, the local
             port is bound in accordance with the GatewayPorts setting.  However, an explicit bind_address may be used to bind the
             connection to a specific address.  The bind_address of "localhost" indicates that the listening port be bound for
             local use only, while an empty address or '*' indicates that the port should be available from all interfaces.

     -l login_name
             Specifies the user to log in as on the remote machine.  This also may be specified on a per-host basis in the config-
             uration file.

     -M      Places the ssh client into "master" mode for connection sharing.  Multiple -M options places ssh into "master" mode
             with confirmation required before slave connections are accepted.  Refer to the description of ControlMaster in
             ssh_config(5) for details.

     -m mac_spec
             Additionally, for protocol version 2 a comma-separated list of MAC (message authentication code) algorithms can be
             specified in order of preference.  See the MACs keyword for more information.

     -N      Do not execute a remote command.  This is useful for just forwarding ports (protocol version 2 only).

     -n      Redirects stdin from /dev/null (actually, prevents reading from stdin).  This must be used when ssh is run in the
             background.  A common trick is to use this to run X11 programs on a remote machine.  For example, ssh -n
             shadows.cs.hut.fi emacs & will start an emacs on shadows.cs.hut.fi, and the X11 connection will be automatically for-
             warded over an encrypted channel.  The ssh program will be put in the background.  (This does not work if ssh needs
             to ask for a password or passphrase; see also the -f option.)

     -O ctl_cmd
             Control an active connection multiplexing master process.  When the -O option is specified, the ctl_cmd argument is
             interpreted and passed to the master process.  Valid commands are: "check" (check that the master process is running)
             and "exit" (request the master to exit).

     -o option
             Can be used to give options in the format used in the configuration file.  This is useful for specifying options for
             which there is no separate command-line flag.  For full details of the options listed below, and their possible val-
             ues, see ssh_config(5).

                   AddressFamily
                   BatchMode
                   BindAddress
                   ChallengeResponseAuthentication
                   CheckHostIP
                   Cipher
                   Ciphers
                   ClearAllForwardings
                   Compression
                   CompressionLevel
                   ConnectionAttempts
                   ConnectTimeout
                   ControlMaster
                   ControlPath
                   DynamicForward
                   EscapeChar
                   ExitOnForwardFailure
                   ForwardAgent
                   ForwardX11
                   ForwardX11Trusted
                   GatewayPorts
                   GlobalKnownHostsFile
                   GSSAPIAuthentication
                   GSSAPIDelegateCredentials
                   HashKnownHosts
                   Host
                   HostbasedAuthentication
                   HostKeyAlgorithms
                   HostKeyAlias
                   HostName
                   IdentityFile
                   IdentitiesOnly
                   KbdInteractiveDevices
                   LocalCommand
                   LocalForward
                   LogLevel
                   MACs
                   NoHostAuthenticationForLocalhost
                   NumberOfPasswordPrompts
                   PasswordAuthentication
                   PermitLocalCommand
                   Port
                   PreferredAuthentications
                   Protocol
                   ProxyCommand
                   PubkeyAuthentication
                   RekeyLimit
                   RemoteForward
                   RhostsRSAAuthentication
                   RSAAuthentication
                   SendEnv
                   ServerAliveInterval
                   ServerAliveCountMax
                   SmartcardDevice
                   StrictHostKeyChecking
                   TCPKeepAlive
                   Tunnel
                   TunnelDevice
                   UsePrivilegedPort
                   User
                   UserKnownHostsFile
                   VerifyHostKeyDNS
                   VisualHostKey
                   XAuthLocation

     -p port
             Port to connect to on the remote host.  This can be specified on a per-host basis in the configuration file.

     -q      Quiet mode.  Causes most warning and diagnostic messages to be suppressed.

     -R [bind_address:]port:host:hostport
             Specifies that the given port on the remote (server) host is to be forwarded to the given host and port on the local
             side.  This works by allocating a socket to listen to port on the remote side, and whenever a connection is made to
             this port, the connection is forwarded over the secure channel, and a connection is made to host port hostport from
             the local machine.

             Port forwardings can also be specified in the configuration file.  Privileged ports can be forwarded only when log-
             ging in as root on the remote machine.  IPv6 addresses can be specified by enclosing the address in square braces or
             using an alternative syntax: [bind_address/]host/port/hostport.

             By default, the listening socket on the server will be bound to the loopback interface only.  This may be overridden
             by specifying a bind_address.  An empty bind_address, or the address '*', indicates that the remote socket should
             listen on all interfaces.  Specifying a remote bind_address will only succeed if the server's GatewayPorts option is
             enabled (see sshd_config(5)).

             If the port argument is '0', the listen port will be dynamically allocated on the server and reported to the client
             at run time.

     -S ctl_path
             Specifies the location of a control socket for connection sharing.  Refer to the description of ControlPath and
             ControlMaster in ssh_config(5) for details.

     -s      May be used to request invocation of a subsystem on the remote system.  Subsystems are a feature of the SSH2 protocol
             which facilitate the use of SSH as a secure transport for other applications (eg. sftp(1)).  The subsystem is speci-
             fied as the remote command.

     -T      Disable pseudo-tty allocation.

     -t      Force pseudo-tty allocation.  This can be used to execute arbitrary screen-based programs on a remote machine, which
             can be very useful, e.g. when implementing menu services.  Multiple -t options force tty allocation, even if ssh has
             no local tty.

     -V      Display the version number and exit.

     -v      Verbose mode.  Causes ssh to print debugging messages about its progress.  This is helpful in debugging connection,
             authentication, and configuration problems.  Multiple -v options increase the verbosity.  The maximum is 3.

     -W host:port
             Requests that standard input and output on the client be forwarded to host on port over the secure channel.  Implies
             -N, -T, ExitOnForwardFailure and ClearAllForwardings and works with Protocol version 2 only.

     -w local_tun[:remote_tun]
             Requests tunnel device forwarding with the specified tun(4) devices between the client (local_tun) and the server
             (remote_tun).

             The devices may be specified by numerical ID or the keyword "any", which uses the next available tunnel device.  If
             remote_tun is not specified, it defaults to "any".  See also the Tunnel and TunnelDevice directives in ssh_config(5).
             If the Tunnel directive is unset, it is set to the default tunnel mode, which is "point-to-point".

     -X      Enables X11 forwarding.  This can also be specified on a per-host basis in a configuration file.

             X11 forwarding should be enabled with caution.  Users with the ability to bypass file permissions on the remote host
             (for the user's X authorization database) can access the local X11 display through the forwarded connection.  An
             attacker may then be able to perform activities such as keystroke monitoring.

             For this reason, X11 forwarding is subjected to X11 SECURITY extension restrictions by default.  Please refer to the
             ssh -Y option and the ForwardX11Trusted directive in ssh_config(5) for more information.

     -x      Disables X11 forwarding.

     -Y      Enables trusted X11 forwarding.  Trusted X11 forwardings are not subjected to the X11 SECURITY extension controls.

     -y      Send log information using the syslog(3) system module.  By default this information is sent to stderr.

     ssh may additionally obtain configuration data from a per-user configuration file and a system-wide configuration file.  The
     file format and configuration options are described in ssh_config(5).

     ssh exits with the exit status of the remote command or with 255 if an error occurred.

AUTHENTICATION
     The OpenSSH SSH client supports SSH protocols 1 and 2.  Protocol 2 is the default, with ssh falling back to protocol 1 if it
     detects protocol 2 is unsupported.  These settings may be altered using the Protocol option in ssh_config(5), or enforced
     using the -1 and -2 options (see above).  Both protocols support similar authentication methods, but protocol 2 is preferred
     since it provides additional mechanisms for confidentiality (the traffic is encrypted using AES, 3DES, Blowfish, CAST128, or
     Arcfour) and integrity (hmac-md5, hmac-sha1, umac-64, hmac-ripemd160).  Protocol 1 lacks a strong mechanism for ensuring the
     integrity of the connection.

     The methods available for authentication are: GSSAPI-based authentication, host-based authentication, public key authentica-
     tion, challenge-response authentication, and password authentication.  Authentication methods are tried in the order speci-
     fied above, though protocol 2 has a configuration option to change the default order: PreferredAuthentications.

     Host-based authentication works as follows: If the machine the user logs in from is listed in /etc/hosts.equiv or
     /etc/ssh/shosts.equiv on the remote machine, and the user names are the same on both sides, or if the files ~/.rhosts or
     ~/.shosts exist in the user's home directory on the remote machine and contain a line containing the name of the client
     machine and the name of the user on that machine, the user is considered for login.  Additionally, the server must be able to
     verify the client's host key (see the description of /etc/ssh/ssh_known_hosts and ~/.ssh/known_hosts, below) for login to be
     permitted.  This authentication method closes security holes due to IP spoofing, DNS spoofing, and routing spoofing.  [Note
     to the administrator: /etc/hosts.equiv, ~/.rhosts, and the rlogin/rsh protocol in general, are inherently insecure and should
     be disabled if security is desired.]

     Public key authentication works as follows: The scheme is based on public-key cryptography, using cryptosystems where encryp-
     tion and decryption are done using separate keys, and it is unfeasible to derive the decryption key from the encryption key.
     The idea is that each user creates a public/private key pair for authentication purposes.  The server knows the public key,
     and only the user knows the private key.  ssh implements public key authentication protocol automatically, using either the
     RSA or DSA algorithms.  Protocol 1 is restricted to using only RSA keys, but protocol 2 may use either.  The HISTORY section
     of ssl(8) contains a brief discussion of the two algorithms.

     The file ~/.ssh/authorized_keys lists the public keys that are permitted for logging in.  When the user logs in, the ssh pro-
     gram tells the server which key pair it would like to use for authentication.  The client proves that it has access to the
     private key and the server checks that the corresponding public key is authorized to accept the account.

     The user creates his/her key pair by running ssh-keygen(1).  This stores the private key in ~/.ssh/identity (protocol 1),
     ~/.ssh/id_dsa (protocol 2 DSA), or ~/.ssh/id_rsa (protocol 2 RSA) and stores the public key in ~/.ssh/identity.pub (protocol
     1), ~/.ssh/id_dsa.pub (protocol 2 DSA), or ~/.ssh/id_rsa.pub (protocol 2 RSA) in the user's home directory.  The user should
     then copy the public key to ~/.ssh/authorized_keys in his/her home directory on the remote machine.  The authorized_keys file
     corresponds to the conventional ~/.rhosts file, and has one key per line, though the lines can be very long.  After this, the
     user can log in without giving the password.

     The most convenient way to use public key authentication may be with an authentication agent.  See ssh-agent(1) for more
     information.

     Challenge-response authentication works as follows: The server sends an arbitrary "challenge" text, and prompts for a
     response.  Protocol 2 allows multiple challenges and responses; protocol 1 is restricted to just one challenge/response.
     Examples of challenge-response authentication include BSD Authentication (see login.conf(5)) and PAM (some non-OpenBSD sys-
     tems).

     Finally, if other authentication methods fail, ssh prompts the user for a password.  The password is sent to the remote host
     for checking; however, since all communications are encrypted, the password cannot be seen by someone listening on the net-
     work.

     ssh automatically maintains and checks a database containing identification for all hosts it has ever been used with.  Host
     keys are stored in ~/.ssh/known_hosts in the user's home directory.  Additionally, the file /etc/ssh/ssh_known_hosts is auto-
     matically checked for known hosts.  Any new hosts are automatically added to the user's file.  If a host's identification
     ever changes, ssh warns about this and disables password authentication to prevent server spoofing or man-in-the-middle
     attacks, which could otherwise be used to circumvent the encryption.  The StrictHostKeyChecking option can be used to control
     logins to machines whose host key is not known or has changed.

     When the user's identity has been accepted by the server, the server either executes the given command, or logs into the
     machine and gives the user a normal shell on the remote machine.  All communication with the remote command or shell will be
     automatically encrypted.

     If a pseudo-terminal has been allocated (normal login session), the user may use the escape characters noted below.

     If no pseudo-tty has been allocated, the session is transparent and can be used to reliably transfer binary data.  On most
     systems, setting the escape character to "none" will also make the session transparent even if a tty is used.

     The session terminates when the command or shell on the remote machine exits and all X11 and TCP connections have been
     closed.

ESCAPE CHARACTERS
     When a pseudo-terminal has been requested, ssh supports a number of functions through the use of an escape character.

     A single tilde character can be sent as ~~ or by following the tilde by a character other than those described below.  The
     escape character must always follow a newline to be interpreted as special.  The escape character can be changed in configu-
     ration files using the EscapeChar configuration directive or on the command line by the -e option.

     The supported escapes (assuming the default '~') are:

     ~.      Disconnect.

     ~^Z     Background ssh.

     ~#      List forwarded connections.

     ~&      Background ssh at logout when waiting for forwarded connection / X11 sessions to terminate.

     ~?      Display a list of escape characters.

     ~B      Send a BREAK to the remote system (only useful for SSH protocol version 2 and if the peer supports it).

     ~C      Open command line.  Currently this allows the addition of port forwardings using the -L, -R and -D options (see
             above).  It also allows the cancellation of existing remote port-forwardings using -KR[bind_address:]port.  !command
             allows the user to execute a local command if the PermitLocalCommand option is enabled in ssh_config(5).  Basic help
             is available, using the -h option.

     ~R      Request rekeying of the connection (only useful for SSH protocol version 2 and if the peer supports it).

TCP FORWARDING
     Forwarding of arbitrary TCP connections over the secure channel can be specified either on the command line or in a configu-
     ration file.  One possible application of TCP forwarding is a secure connection to a mail server; another is going through
     firewalls.

     In the example below, we look at encrypting communication between an IRC client and server, even though the IRC server does
     not directly support encrypted communications.  This works as follows: the user connects to the remote host using ssh, speci-
     fying a port to be used to forward connections to the remote server.  After that it is possible to start the service which is
     to be encrypted on the client machine, connecting to the same local port, and ssh will encrypt and forward the connection.

     The following example tunnels an IRC session from client machine "127.0.0.1" (localhost) to remote server
     "server.example.com":

         $ ssh -f -L 1234:localhost:6667 server.example.com sleep 10
         $ irc -c '#users' -p 1234 pinky 127.0.0.1

     This tunnels a connection to IRC server "server.example.com", joining channel "#users", nickname "pinky", using port 1234.
     It doesn't matter which port is used, as long as it's greater than 1023 (remember, only root can open sockets on privileged
     ports) and doesn't conflict with any ports already in use.  The connection is forwarded to port 6667 on the remote server,
     since that's the standard port for IRC services.

     The -f option backgrounds ssh and the remote command "sleep 10" is specified to allow an amount of time (10 seconds, in the
     example) to start the service which is to be tunnelled.  If no connections are made within the time specified, ssh will exit.

X11 FORWARDING
     If the ForwardX11 variable is set to "yes" (or see the description of the -X, -x, and -Y options above) and the user is using
     X11 (the DISPLAY environment variable is set), the connection to the X11 display is automatically forwarded to the remote
     side in such a way that any X11 programs started from the shell (or command) will go through the encrypted channel, and the
     connection to the real X server will be made from the local machine.  The user should not manually set DISPLAY.  Forwarding
     of X11 connections can be configured on the command line or in configuration files.

     The DISPLAY value set by ssh will point to the server machine, but with a display number greater than zero.  This is normal,
     and happens because ssh creates a "proxy" X server on the server machine for forwarding the connections over the encrypted
     channel.

     ssh will also automatically set up Xauthority data on the server machine.  For this purpose, it will generate a random autho-
     rization cookie, store it in Xauthority on the server, and verify that any forwarded connections carry this cookie and
     replace it by the real cookie when the connection is opened.  The real authentication cookie is never sent to the server
     machine (and no cookies are sent in the plain).

     If the ForwardAgent variable is set to "yes" (or see the description of the -A and -a options above) and the user is using an
     authentication agent, the connection to the agent is automatically forwarded to the remote side.

VERIFYING HOST KEYS
     When connecting to a server for the first time, a fingerprint of the server's public key is presented to the user (unless the
     option StrictHostKeyChecking has been disabled).  Fingerprints can be determined using ssh-keygen(1):

           $ ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key

     If the fingerprint is already known, it can be matched and the key can be accepted or rejected.  Because of the difficulty of
     comparing host keys just by looking at hex strings, there is also support to compare host keys visually, using random art.
     By setting the VisualHostKey option to "yes", a small ASCII graphic gets displayed on every login to a server, no matter if
     the session itself is interactive or not.  By learning the pattern a known server produces, a user can easily find out that
     the host key has changed when a completely different pattern is displayed.  Because these patterns are not unambiguous how-
     ever, a pattern that looks similar to the pattern remembered only gives a good probability that the host key is the same, not
     guaranteed proof.

     To get a listing of the fingerprints along with their random art for all known hosts, the following command line can be used:

           $ ssh-keygen -lv -f ~/.ssh/known_hosts

     If the fingerprint is unknown, an alternative method of verification is available: SSH fingerprints verified by DNS.  An
     additional resource record (RR), SSHFP, is added to a zonefile and the connecting client is able to match the fingerprint
     with that of the key presented.

     In this example, we are connecting a client to a server, "host.example.com".  The SSHFP resource records should first be
     added to the zonefile for host.example.com:

           $ ssh-keygen -r host.example.com.

     The output lines will have to be added to the zonefile.  To check that the zone is answering fingerprint queries:

           $ dig -t SSHFP host.example.com

     Finally the client connects:

           $ ssh -o "VerifyHostKeyDNS ask" host.example.com
           [...]
           Matching host key fingerprint found in DNS.
           Are you sure you want to continue connecting (yes/no)?

     See the VerifyHostKeyDNS option in ssh_config(5) for more information.
SSH-BASED VIRTUAL PRIVATE NETWORKS
     ssh contains support for Virtual Private Network (VPN) tunnelling using the tun(4) network pseudo-device, allowing two net-
     works to be joined securely.  The sshd_config(5) configuration option PermitTunnel controls whether the server supports this,
     and at what level (layer 2 or 3 traffic).

     The following example would connect client network 10.0.50.0/24 with remote network 10.0.99.0/24 using a point-to-point con-
     nection from 10.1.1.1 to 10.1.1.2, provided that the SSH server running on the gateway to the remote network, at
     192.168.1.15, allows it.

     On the client:

           # ssh -f -w 0:1 192.168.1.15 true
           # ifconfig tun0 10.1.1.1 10.1.1.2 netmask 255.255.255.252
           # route add 10.0.99.0/24 10.1.1.2

     On the server:

           # ifconfig tun1 10.1.1.2 10.1.1.1 netmask 255.255.255.252
           # route add 10.0.50.0/24 10.1.1.1

     Client access may be more finely tuned via the /root/.ssh/authorized_keys file (see below) and the PermitRootLogin server
     option.  The following entry would permit connections on tun(4) device 1 from user "jane" and on tun device 2 from user
     "john", if PermitRootLogin is set to "forced-commands-only":

       tunnel="1",command="sh /etc/netstart tun1" ssh-rsa ... jane
       tunnel="2",command="sh /etc/netstart tun2" ssh-rsa ... john

     Since an SSH-based setup entails a fair amount of overhead, it may be more suited to temporary setups, such as for wireless
     VPNs.  More permanent VPNs are better provided by tools such as ipsecctl(8) and isakmpd(8).

ENVIRONMENT
     ssh will normally set the following environment variables:

     DISPLAY               The DISPLAY variable indicates the location of the X11 server.  It is automatically set by ssh to point
                           to a value of the form "hostname:n", where "hostname" indicates the host where the shell runs, and 'n'
                           is an integer >= 1.  ssh uses this special value to forward X11 connections over the secure channel.
                           The user should normally not set DISPLAY explicitly, as that will render the X11 connection insecure
                           (and will require the user to manually copy any required authorization cookies).

     HOME                  Set to the path of the user's home directory.

     LOGNAME               Synonym for USER; set for compatibility with systems that use this variable.

     MAIL                  Set to the path of the user's mailbox.

     PATH                  Set to the default PATH, as specified when compiling ssh.

     SSH_ASKPASS           If ssh needs a passphrase, it will read the passphrase from the current terminal if it was run from a
                           terminal.  If ssh does not have a terminal associated with it but DISPLAY and SSH_ASKPASS are set, it
                           will execute the program specified by SSH_ASKPASS and open an X11 window to read the passphrase.  This
                           is particularly useful when calling ssh from a .xsession or related script.  (Note that on some
                           machines it may be necessary to redirect the input from /dev/null to make this work.)

     SSH_AUTH_SOCK         Identifies the path of a UNIX-domain socket used to communicate with the agent.

     SSH_CONNECTION        Identifies the client and server ends of the connection.  The variable contains four space-separated
                           values: client IP address, client port number, server IP address, and server port number.

     SSH_ORIGINAL_COMMAND  This variable contains the original command line if a forced command is executed.  It can be used to
                           extract the original arguments.

     SSH_TTY               This is set to the name of the tty (path to the device) associated with the current shell or command.
                           If the current session has no tty, this variable is not set.

     TZ                    This variable is set to indicate the present time zone if it was set when the daemon was started (i.e.
                           the daemon passes the value on to new connections).

     USER                  Set to the name of the user logging in.

     Additionally, ssh reads ~/.ssh/environment, and adds lines of the format "VARNAME=value" to the environment if the file
     exists and users are allowed to change their environment.  For more information, see the PermitUserEnvironment option in
     sshd_config(5).

ENVIRONMENT
     SSH_USE_STRONG_RNG
             The reseeding of the OpenSSL random generator is usually done from /dev/urandom.  If the SSH_USE_STRONG_RNG environ-
             ment variable is set to value other than 0 the OpenSSL random generator is reseeded from /dev/random.  The number of
             bytes read is defined by the SSH_USE_STRONG_RNG value.  Minimum is 6 bytes.  This setting is not recommended on the
             computers without the hardware random generator because insufficient entropy causes the connection to be blocked
             until enough entropy is available.

FILES
     ~/.rhosts
             This file is used for host-based authentication (see above).  On some machines this file may need to be world-read-
             able if the user's home directory is on an NFS partition, because sshd(8) reads it as root.  Additionally, this file
             must be owned by the user, and must not have write permissions for anyone else.  The recommended permission for most
             machines is read/write for the user, and not accessible by others.

     ~/.shosts
             This file is used in exactly the same way as .rhosts, but allows host-based authentication without permitting login
             with rlogin/rsh.

     ~/.ssh/
             This directory is the default location for all user-specific configuration and authentication information.  There is
             no general requirement to keep the entire contents of this directory secret, but the recommended permissions are
             read/write/execute for the user, and not accessible by others.

     ~/.ssh/authorized_keys
             Lists the public keys (RSA/DSA) that can be used for logging in as this user.  The format of this file is described
             in the sshd(8) manual page.  This file is not highly sensitive, but the recommended permissions are read/write for
             the user, and not accessible by others.

     ~/.ssh/config
             This is the per-user configuration file.  The file format and configuration options are described in ssh_config(5).
             Because of the potential for abuse, this file must have strict permissions: read/write for the user, and not accessi-
             ble by others.

     ~/.ssh/environment
             Contains additional definitions for environment variables; see ENVIRONMENT, above.

     ~/.ssh/identity
     ~/.ssh/id_dsa
     ~/.ssh/id_rsa
             Contains the private key for authentication.  These files contain sensitive data and should be readable by the user
             but not accessible by others (read/write/execute).  ssh will simply ignore a private key file if it is accessible by
             others.  It is possible to specify a passphrase when generating the key which will be used to encrypt the sensitive
             part of this file using 3DES.
     ~/.ssh/identity.pub
     ~/.ssh/id_dsa.pub
     ~/.ssh/id_rsa.pub
             Contains the public key for authentication.  These files are not sensitive and can (but need not) be readable by any-
             one.

     ~/.ssh/known_hosts
             Contains a list of host keys for all hosts the user has logged into that are not already in the systemwide list of
             known host keys.  See sshd(8) for further details of the format of this file.

     ~/.ssh/rc
             Commands in this file are executed by ssh when the user logs in, just before the user's shell (or command) is
             started.  See the sshd(8) manual page for more information.

     /etc/hosts.equiv
             This file is for host-based authentication (see above).  It should only be writable by root.

     /etc/ssh/shosts.equiv
             This file is used in exactly the same way as hosts.equiv, but allows host-based authentication without permitting
             login with rlogin/rsh.

     /etc/ssh/ssh_config
             Systemwide configuration file.  The file format and configuration options are described in ssh_config(5).

     /etc/ssh/ssh_host_key
     /etc/ssh/ssh_host_dsa_key
     /etc/ssh/ssh_host_rsa_key
             These three files contain the private parts of the host keys and are used for host-based authentication.  If protocol
             version 1 is used, ssh must be setuid root, since the host key is readable only by root.  For protocol version 2, ssh
             uses ssh-keysign(8) to access the host keys, eliminating the requirement that ssh be setuid root when host-based
             authentication is used.  By default ssh is not setuid root.

     /etc/ssh/ssh_known_hosts
             Systemwide list of known host keys.  This file should be prepared by the system administrator to contain the public
             host keys of all machines in the organization.  It should be world-readable.  See sshd(8) for further details of the
             format of this file.

     /etc/ssh/sshrc
             Commands in this file are executed by ssh when the user logs in, just before the user's shell (or command) is
             started.  See the sshd(8) manual page for more information.

IPV6
     IPv6 address can be used everywhere where IPv4 address. In all entries must be the IPv6 address enclosed in square brackets.
     Note: The square brackets are metacharacters for the shell and must be escaped in shell.

SEE ALSO
     scp(1), sftp(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), ssh-keyscan(1), tun(4), hosts.equiv(5), ssh_config(5),
     ssh-keysign(8), sshd(8)

     The Secure Shell (SSH) Protocol Assigned Numbers, RFC 4250, 2006.

     The Secure Shell (SSH) Protocol Architecture, RFC 4251, 2006.

     The Secure Shell (SSH) Authentication Protocol, RFC 4252, 2006.

     The Secure Shell (SSH) Transport Layer Protocol, RFC 4253, 2006.

     The Secure Shell (SSH) Connection Protocol, RFC 4254, 2006.

     Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints, RFC 4255, 2006.

     Generic Message Exchange Authentication for the Secure Shell Protocol (SSH), RFC 4256, 2006.

     The Secure Shell (SSH) Session Channel Break Extension, RFC 4335, 2006.

     The Secure Shell (SSH) Transport Layer Encryption Modes, RFC 4344, 2006.

     Improved Arcfour Modes for the Secure Shell (SSH) Transport Layer Protocol, RFC 4345, 2006.

     Diffie-Hellman Group Exchange for the Secure Shell (SSH) Transport Layer Protocol, RFC 4419, 2006.

     The Secure Shell (SSH) Public Key File Format, RFC 4716, 2006.

     A. Perrig and D. Song, Hash Visualization: a New Technique to improve Real-World Security, 1999, International Workshop on
     Cryptographic Techniques and E-Commerce (CrypTEC '99).

AUTHORS
     OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen.  Aaron Campbell, Bob Beck, Markus Friedl,
     Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added newer features and created OpenSSH.  Markus Friedl con-
     tributed the support for SSH protocol versions 1.5 and 2.0.

BSD                            November 17, 2014                           BSD
分类: 工作 标签: , , ,
  1. 本文目前尚无任何评论.